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GP Review

The Roll of GPs

Posterior Distribution
• diagonals: probability distribution of each 

parameter, integrating out all others
• off-diagonals: pairwise distributions showing 

dependence between parameters 

Physics Model:
• CCNU-LBT
• iEbE-VISHNU

Model Parameters - System Properties
• coupling constant
• interaction scale

Experimental Data
• RHIC & LHC RAA

Gaussian Process Emulator
• non-parametric interpolation
• fast surrogate to full Physics Model

MCMC
(Markov-Chain Monte-Carlo)

• random walk through parameter space 
weighted by posterior probability

Bayes’ Theorem
posterior∝likelihood × prior

• prior: initial knowledge of parameters
• likelihood: probability of observing exp. 

data, given  proposed parameters

after many steps, MCMC equilibrates to

calculate events on Latin hypercube

Extraction of QGP Properties via a Model-to-Data Analysis
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GP Review

What are GPs?

I Formally, a Gaussian Process or GP is a stochastic process Y indexed
by x ∈ X such that realizations are jointly Multivariate Normal.

I Practically, a GP provides a way to (very quickly!) predict an
unknown function’s value at new points conditional on the function’s
value at training points.

I A GP says, essentially, if the inputs are close then the outputs should
be close

I It is completely determined by a mean function µ(·) and a
positive-definite covariance function c(·, ·) through

µi = µ(xi ) Σij = c(xi , xj)
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GP Review

GPs In Action - Toy Example

First, the points we’re trying to predict
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GP Review

GPs In Action - Toy Example

Prediction = mean + uncertainty

The gray bands are 95% confidence intervals.
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GP Review

How It Works

Let

I f (·) be our unknown function

I xtrain be the training data

I xnew be the points we are trying to predict

(
f (xnew)
f (xtrain)

)
∼ MVN

[(
µ(xnew)
µ(xtrain)

)
,

(
c(xnew, xnew) c(xnew, xtrain)
c(xtrain, xnew) c(xtrain, xtrain)

)]

p(f (xnew) | f (xtrain)) very fast to find - Conditional Normal theory
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Current Application

Data Exploration/setup

I Two computer input parameters: x = {Λjet, αmed
s }

I 3 collision systems/beach energies, each at two centralities; 6
independent datasets

I For each dataset, RAA measured at 7-14 pT values; 66 total values
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Current Application

Model Setup

I Let ~yF be the field/experimental data

I Let ~yR be the “real” values; i.e., ~yF = ~yR with error

I Let ~yM be the computer model data, a function of input parameter
we care about

I Let Σy be the experimental covariance matrix

~yF = ~yR(x∗) + ε (1)

~yR = ~yM(x) (2)

ε ∼ N(0,Σy ) (3)
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Current Application

Analysis Steps

~yF = ~yR(x∗) + ε (4)

~yR = ~yM(x) (5)

ε ∼ N(0,Σy ) (6)

1. Train GPs on ~yM so that for any x we can quickly predict ~yM

2. Perform inference on x∗

2.1 Propose value x∗prop
2.2 Predict ~yM(x∗prop)

2.3 Accept based on likelihood of ~yF
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Current Application

Experimental Structure

I To simultaneously calibrate on all 6 datasets, we concatenate all
experimental data

I I.e., ~yF , ~yM ∈ R66

Σy ∈ R66×66 is important. We treat as 6-block matrix; for kth block Σk
y :

Σk
y = Σk

sys + Σk
stat (7)

Σk
stat = σstati ,k σ

stat
j ,k δij (8)

Σk
sys = σsysi ,k σ

sys
j ,k exp

[
−
(
pi ,k − pj ,k

`k

)α]
(9)

I pi ,k is the ith pT value of dataset k .

I σstat
k and σsys

k are the statistical and systematic errors, respectively,
associated with RAA values of collision system k
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Prediction and Calibration

Validating the Emulator

To make sure our emulator predicts the computer model well, I trained it
on 23 computer runs and predicted a holdout set.
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Prediction and Calibration

Analysis Steps

~yF = ~yR(x∗) + ε (10)

~yR = ~yM(x) (11)

ε ∼ N(0,Σy ) (12)

1. Train GPs on ~yM so that for any x we can quickly predict ~yM

2. Perform inference on x∗

2.1 Propose value x∗prop
2.2 Predict ~yM(x∗prop)

2.3 Accept based on likelihood of ~yF
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Prediction and Calibration

GP Predictions from Input Prior Draws
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Figure: Predictive means from prior draws of input parameters
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Prediction and Calibration

GP Predictions From Input Posterior Draws
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Figure: Predictive means from posterior draws of input parameters
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Prediction and Calibration

Input Posterior Distributions
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Figure: Predictive means from posterior draws of input parameters
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